

VIKRAMA SIMHAPURI UNIVERSITY::NELLORE

Common Framework of CBCS for Colleges in Andhra Pradesh (A.P. State of Council of Higher Education)

B.A./B.Sc. (COMPUTER APPLICATIONS)

(Under CBCS Framework With Effect From 2020-21)

PROGRAMME: FOUR-YEAR

(With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model Q.P. for fifteen Courses of 1, 2, 3 & 4 Semesters)

(with effect from 2020-21 Academic Year)

Structure of Computer Applications

Programme: B.A./B.Sc. with Computer Applications as one of the Core Subjects.

Discipline: Computer Applications

Year	Semester	Paper Code	Subject	Hours/ Week	Credits	IA	ES	Total
	T	C1	Information Technology	4	3	25	75	100
First	I	C1-P	Information Technology Lab	2	2		50	50
Year		C2	E-commerce and Web Designing	4	3	25	75	100
	II	C2-P	E-commerce and Web Designing Lab	2	2		50	50
		C3	Programming with C & C++	4	3	25	75	100
	III	С3-Р	Programming with C & C++Lab	2	2		50	50
Second		C4	Programming with Java	4	3	25	75	100
Year		C4-P	Programming with Java Lab	2	2		50	50
	IV	C5	Database Management System	4	3	25	75	100
		C5-P	Database Management System Lab	2	2		50	50

PROGRAMME: THREE-YEAR DEGREE

Semester-wise Syllabus under CBCS(w.e.f. 2020-21 Admitted Batch)

I Year B.A. (CA) / B Com (CA) / B.Sc. (CA), SEMESTER- I

Discipline: COMPUTER APPLICATIONS

INFORMATION TECHNOLOGY

Semester	Course Code	Course Title	Hours/Week	Hours	Credits
I	C1	Information Technology	4	60	3

Model Outcomes:

At the end of the course, the students is expected to DEMONSTRATE the following cognitive abilities (thinking skill) and psychomotor skills.

- A. Remembers and states in a systematic way (Knowledge)
 - 1. Describe the fundamental hardware components that make up a computer's hardware and the role of each of these components
 - 2. understand the difference between an operating system and an application program, and what each is used for in a computer
 - 3. Use technology ethically, safely, securely, and legally
 - 4. Use systems development, word-processing, spreadsheet, and presentation software to solve basic information systems problems
- B. Explains (Understanding)
 - 5. Apply standard statistical inference procedures to draw conclusions from data
 - 6. Retrieve information and create reports from databases
 - 7. Interpret, produce, and present work-related documents and information effectively and accurately
- C. Critically examines, using data and figures (Analysis and Evaluation**)
 - 8. Analyse compression techniques and file formats to determine effective ways of securing, managing, and transferring data
 - 9. Identify and analyse user needs and to take them into account in the selection, creation, integration, evaluation, and administration of computing based systems.

- 10. Analyse a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
- 11. Identify and analyse computer hardware, software
- D. Working in 'Outside Syllabus *Area' under a Co-curricular Activity*(Creativity)

 Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- E. Efficiently learn and use Microsoft Office applications.

Syllabus:

Unit	Details
I	Introduction:
	Computer Definition - Characteristics and Limitations of Computer, Generations of
	Computer, Classification of Computers, Applications of Computer, Hardware — Basic
	organization of Computer - Input and Output Devices
II	Memories: primary, secondary and cache memory, Software: types of software, system
	software, Application software, commercial software, open source software, domain software
	and free ware software, Programming Languages: Introduction to Programming Languages –
	Generations of Programming Languages
III	MS word:
	Features of MS Word - Parts of Word Window - Creating, Saving, Opening document,
	Printing, Formatting: Formatting of Text and Paragraph - Bullets and Numbering - Editing -
	Moving and Copying - Find and Replace Text - Tables: Creating tables, inserting and
	deleting rows and columns, Insertion of pictures – Insertion of clipart - Headers and Footers -
	Mail Merge
IV	MS Excel:
	Features of Excel, Parts of Excel window, Workbooks, Creating, Opening and Saving a
	Workbook, Worksheets, rows, columns, Inserting and Deleting rows and columns, cells,
	Entering labels, values, and formulas in worksheet, Formatting: Adjusting row height and
	column width - Formatting cell values, Formulas and Functions: operators used in formula,
	cell references in formula, Mathematical, Statistical, Logical and Text functions, Charts:
	Different types of charts, Creating a chart
L	I .

V MS Power point:

Features of PowerPoint, Parts of PowerPoint window, creating, saving and opening presentation, working with slides: Inserting, deleting, copying slides, editing text, formatting text, Formatting and Modifying Presentations: Applying transition and animation to the slides, inserting music or sound on a slide, viewing slide show

Learning Resources (Information Technology)

References:

- (1) P.Mohan computer fundamentals- Himalaya Publications.
- (2) R.K.Sharma and Shashi K Gupta, Computer Fundamentals Kalyani Publications
- (3) Fundamentals of Computers By Balagurusamy, Mcgraw Hill
- (4) Microsoft Office 2007 Fundamentals, 1st Edition By Laura Story, Dawna Walls
- (5) MS-Office S.S. Shrivastava
- (6) MS-OFFICE 2007 Training Guide Prof. Satish Jain, M. Geetha, Kratika BPB Publications

Online Resources:

https://support.office.com/en-us/office-training-center

https://www.skillshare.com/browse/microsoft-office

https://www.tutorialspoint.com/computer_fundamentals/index.htm

https://www.javatpoint.com/computer-fundamentalstutorial

https://edu.gcfglobal.org/en/subjects/office/

https://www.microsoft.com/en-us/learning/training.aspx

Information Technology Lab

Semester	Course	Course Title	Hours/Week	Hours	Credits
	Code				
I	C1-P	Information Technology	2	30	2
		Lab			

- 1. MS word creation of documents letters invitations etc,
- 2. Create tables in MS-WORD
- 3. Perform mail merge using MS Word
- 4. MS Excel performing different formulas
- 5. creating charts in Excel
- 6. create presentation in power point
- 7. inserting, deleting slides in Power Point
- 8. Illustrate Animation in presentation

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

Measurable

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity)
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- 4. Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)
- 5. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity))

General

- 1. Group Discussion
- 2. Visit to Software Technology parks / industries

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Coding exercises,
- 4. Practical assignments and laboratory reports,
- 5. Observation of practical skills,
- 6. Individual and group project reports,
- 7. Efficient delivery using seminar presentations,
- 8. Viva voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

I Year B.A. (CA) / B Com (CA) / B.Sc. (CA),

CBCS - SEMESTER- I

INFORMATION TECHNOLOGY

MODEL QUESTION PAPER

Time: 3 Hours Max. Marks: 75

SECTION-A

Answer any FIVE of the following Questions:

 $(5 \times 5 = 25 \text{ Marks})$

- **1.** Write characteristics of computers
- 2. Write any three input devices
- **3.** Write about cache memory
- 4. Explain commercial software
- 5. Explain how to create and save documents in Word
- 6. Write about inserting pictures in a document
- 7. Briefly explain cell references in a formula in Excel
- 8. How will you insert and delete rows in Excel
- 9. Write about opening a presentation in Power Point
- 10. Explain how to view slide show

SECTION - B

Answer any **FIVE** of the following Questions

 $(5 \times 10 = 50 \text{ Marks})$

- 11. Explain basic organization of a computer system
- 12. Write about classification of computers
- 13. Define Memory. Write about Primary memory units
- 14. Write about generations of programming languages
- 15. Write and explain the parts of Word window
- 16. Explain mail merge procedure in MS Word
- 17. Write in detail about features of Excel
- **18.** What is a chart? Explain different types of charts
- 19. Explain the creation procedure of a presentation in Power Point
- 20. Define animation. Explain how to you add transition and animation to the slides

Note: Paper Setter must select TWO Short Questions and TWO Essay Questions from Each Unit

PROGRAMME: THREE-YEAR DEGREE

Semester-wise Syllabus under CBCS(w.e.f. 2020-21 Admitted Batch)

I Year B.A. (CA) / B Com (CA) / B.Sc. (CA), SEMESTER-II
Discipline: COMPUTER APPLICATIONS

E-COMMERCE & WEB DESIGNING

Semester	Course	Course Title	Hours/Week	Hours	Credits
	Code				
II	C2	E-Commerce & Web Designing	4	60	3

Learning Outcomes:

At the end of the course, the students is expected to DEMONSTRATE the following cognitive abilities (thinking skill) and psychomotor skills.

- B. Remembers and states in a systematic way (Knowledge)
 - 1. Understand the foundations and importance of E-commerce
 - 2. Define Internet trading relationships including Business to Consumer, Business-to-Business, Intra-organizational
 - 3. Describe the infrastructure for E-commerce
 - 4. Discuss legal issues and privacy in E-Commerce
 - 5. Understand the principles of creating an effective web page, including an in-depth consideration of information architecture
- B. Explains (Understanding)
 - 6. Recognize and discuss global E-commerce issues
 - 7. Learn the language of the web: HTML
- C. Critically examines, using data and figures (Analysis and Evaluation)
 - 8. Analyze the impact of E-commerce on business models and strategy
 - 9. Assess electronic payment systems
 - 10. Exploring a web development framework as an implementation example and create dynamically generated web site complete with user accounts, page level security, modular design using css

D. Working in 'Outside Syllabus *Area' under a Co-curricular Activity*(Creativity)

Use the Systems Design Approach to implement websites with the following steps:

- Define purpose of the site and subsections
- Identify the audience
- Design and/or collect site content
- Design the website theme and navigational structure
- Design & develop web pages including: Hyperlinks, Lists, Tables, Frames, Forms, Images, Behaviours
- E. Build a site based on the design decisions and progressively incorporate tools and techniques covered

SYLLABUS

Unit Details

I Unit I: Introduction:

Introduction to Internet: Internet Terminology – History of the Internet – Advantages & disadvantages of Internet – How internet works

Electronic Commerce: Definition, types, advantages and disadvantages, E-Commerce transaction on World Wide Web. Electronic Market-Online shopping, Three models of Electronic Market - E-Business.

II Unit-II: E-payment System:

Models and methods of e-payments (Debit Card, Credit Card, Smart Cards, e-money), Digital Signatures (Procedure, Working And Legal Position), Payment Gateways, Online Banking (Meaning, Concepts, Importance, Electronic Fund Transfer), Risks Involved in e-payments.

III Unit-III: On-line Business Transactions:

Meaning, Purpose, Advantages and Disadvantages of Transacting Online, E-Commerce Applications in Various Industries Like (Banking, Insurance, Payment of Bills), Benefits, Problems and Features, Online Services (Financial, Travel and Career), Online Learning, Online Shopping (Amazon, Flipkart, etc.)

IV Unit-IV: Website designing

Introduction to HTML: Basic HTML – HTML document structure – HTML tags – Basefont tag – title tag – body tag – Horizontal Rule Tag - Text formatting tags – Character tags - Character entities, **HTML Lists:** Ordered List, Unordered List & Definition List – Using colors – Using Images

V Unit V: Website designing:

Hyperlinks: Textual links, Graphical links, types of document links, anchor tag HTML Tables
table creations tags, Nested Tables, Frames: Frame introduction - frame creation tags Nested Frames

Learning Resources (E-commerce & Web Designing)

References:

- (1) E-commerce and E-business Himalaya publishers
- (2) E-Commerce by Kenneth C Laudon, PEARSON INDIA
- (3) Web Design: Introductory with MindTap Jennifer T Campbell, Cengage India
- (4) HTML & WEB DESIGN:TIPS& TECHNIQUES JAMSA, KRIS, McGraw Hill
- (5) Fundamentals Of Web Development by Randy Connolly, Ricardo Hoar, Pearson
- (6) HTML & CSS: COMPLETE REFERENCE POWELL, THOMAS, McGrawHill

Online Resources:

http://www.kartrocket.com

http://www.e-commerceceo.com

http://www.fastspring.com

https://teamtreehouse.com/tracks/web-design

E-COMMERCE & WEB DESIGNING LAB

Semester	Course	Course Title	Hours/Week	Hours	Credits
	Code				
II	C2-P	E-Commerce & Web Designing	2	30	2
		Lab			

- 1. Creation of simple web page using formatting tags
- 2. Creation of lists and
- 3. Creation of web page with text tags
- 4. Creation of tables with attributes
- 5. Creation of hyperlinks
- 6. Creation of hyperlinks and including images
- 7. Creation of forms
- 8. Creation of framesets

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

MEASURABLE

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity)
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams)
- 4. Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)
- 5. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

GENERAL

Group Discussion

Visit to Software Technology parks / industries

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Coding exercises,
- 4. Practical assignments and laboratory reports,
- 5. Observation of practical skills,
- 6. Individual and group project reports,
- 7. Efficient delivery using seminar presentations,
- 8. Viva voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

I Year B.A. (CA) / B Com (CA) / B.Sc. (CA),

CBCS - SEMESTER- II

E-COMMERCE & WEB DESIGNING

MODEL QUESTION PAPER

Time: 3 Hours Max. Marks: 75

SECTION-A

Answer any FIVE of the following Questions:

 $(5 \times 5 = 25 \text{ Marks})$

- 1. Define Internet. Write disadvantages of Internet
- **2.** Write about e-business
- **3.** Define e-payment system
- **4.** Explain briefly the methods of e-payment system
- **5.** Write the purpose of online business transaction
- 6. Write about online learning
- 7. Briefly explain HTML document structure
- 8. Write about Horizontal rule tag
- **9.** Define Hyperlink
- 10. Define table. Explain table creation tags.

SECTION - B

Answer any **FIVE** of the following Questions

 $(5 \times 10 = 50 \text{ Marks})$

- 11. Explain the working of Internet.
- 12. What is e-commerce? Write about the three models of e-market
- 13. Explain about Payment gateways
- **14.** Write about various risks involved in e-payment system
- **15.** Write and explain advantages of online transactions
- **16.** Explain the features of online shopping with an example
- 17. Write in detail about text formatting tags in HTML
- 18. Write about lists in HTML
- 19. Explain different types hyperlinks used in a web page
- 20. Explain about frames in HTML

Note: Paper Setter must select TWO Short Questions and TWO Essay Questions from Each Unit

PROGRAMME: THREE-YEAR DEGREE

Semester-wise Syllabus under CBCS (w.e.f. 2020-21 Admitted Batch)

II Year B.A. (CA) / B Com (CA) / B.Sc. (CA), SEMESTER-III

Discipline: COMPUTER APPLICATIONS

PROGRAMMING WITH C & C++

Semester	Course	Course Title	Hours/Week	Hours	Credits
	Code				
III	С3	Programming with C & C++	4	60	3

Model Outcomes:

At the end of the course, the students is expected to DEMONSTRATE the following cognitive abilities (thinking skill) and psychomotor skills.

- C. Remembers and states in a systematic way (Knowledge)
 - 1. Develop programming skills
 - 2. Declaration of variables and constants use of operators and expressions
 - 3. learn the syntax and semantics of programming language
 - 4. Be familiar with programming environment of C and C++
 - 5. Ability to work with textual information (characters and strings) & arrays
- D. Explains (Understanding)
 - 6. Understanding a functional hierarchical code organization
 - 7. Understanding a concept of object thinking within the framework of functional model
 - 8. Write program on a computer, edit, compile, debug, correct, recompile and run it
- E. Critically examines, using data and figures (Analysis and Evaluation)
 - 9. Choose the right data representation formats based on the requirements of the problem
 - 10. Analyze how C++ improves C with object-oriented features
 - 11. Evaluate comparisons and limitations of the various programming constructs and choose correct one for the task in hand.
- D. Working in 'Outside Syllabus *Area' under a Co-curricular Activity*(Creativity)

 Planning of structure and content, writing, updating and modifying computer programs for user solutions
- E. Exploring C programming and Design C++ classes for code reuse (Practical skills***)

SYLLABUS

Unit Details

I Introduction:

Introduction - Structure of C program - C character set, Tokens: Constants, Variables, Keywords, Identifiers - C data types - C operators (arithmetic, relational, logical, increment and decrement) - Standard I/O in C (scanf, printf) - Conditional Control statements (if and Switch) Statements

II Loops And Arrays:

Repetitive statements: While, Do While and For Loops - Use of Break and Continue Statements - **Arrays**: Introduction - Types of arrays, one dimensional arrays - Declaration of one dimensional arrays - Accessing array elements - Storing values in an array - Two Dimensional Arrays Declaration of two dimensional arrays - Accessing array elements - Storing values in 2-D arrays

III Strings and Functions:

Strings: Definition, Declaration and Initialization of String Variables - String Handling Functions - **Functions**: Defining Functions - Function Call - passing parameters: Call By Value, Call By Reference - Recursion

IV Classes and Objects

Introduction to OOP and its basic features - C++ program structure - Classes and objects - Friend Functions- Static Functions - Constructor - Types of constructors - Destructors - Unary Operators

V Inheritance:

Inheritance - Types of Inheritance - Types of derivation - Public - Private - Protected Hierarchical Inheritance - Multiple Inheritance - Multiple Inheritance - Hybrid Inheritance

Learning Resources (Programming with C & C++)

Reference Books:

- 1. Let Us C YashavantKanetkar
- 2. Mastering C by K R Venugopal and Sudeep R Prasad, McGraw Hill
- 3. E. Balagurusamy "Object oriented programming with C++
- 4. The C++ Programming Language Bjarne Stroustrup

- 5. R.Ravichandran "Programming with C++"
- 6. Expert C Programming: Deep Secrets Kindle Edition Peter van der Linden
- 7. C++ Primer Stanley B. Lippman, Josée Lajoie, Barbara E. Moo

Online Resources:

https://www.tutorialspoint.com/cprogramming/index.html

https://www.learn-c.org/

https://www.programiz.com/c-programming

https://www.w3schools.in/c-tutorial/

https://www.cprogramming.com/tutorial/c-tutorial.html

https://www.tutorialspoint.com/cplusplus/index.html

https://www.programiz.com/cpp-programminghttp://www.cplusplus.com/doc/tutorial/

https://www.learn-cpp.org/

https://www.javatpoint.com/cpp-tutorial

PROGRAMMING WITH C & C++ LAB

Semester	Course	Course Title	Hours/Week	Hours	Credits
	Code				
III	С3-Р	Programming with C & C++ Lab	2	30	2

- 1. Write C programs for
 - a. Fibonacci Series
 - b. Prime number
 - c. Palindrome number
 - d. Armstrong number.
- 2. 'C' program for multiplication of two matrices
- 3. 'C' program to implement string functions
- 4. 'C' program to swap numbers
- 5. 'C' program to calculate factorial using recursion
- 6. 'C++' program to perform addition of two complex numbers using constructor
- 7. Write a program to find the largest of two given numbers in two different classes using friend function
- 8. Program to add two matrices using dynamic constructor
- 9. Implement a class string containing the following functions:
 - a. Overload + operator to carry out the concatenation of strings.
 - b. Overload == operator to carry out the comparison of strings.
- 10. Program to implement inheritance.

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

MEASURABLE

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity)
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams)
- 4. Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)
- 5. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity))

General

Group Discussion

Visit to Software Technology parks / industries

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Coding exercises,
- 4. Practical assignments and laboratory reports,
- 5. Observation of practical skills,
- 6. Individual and group project reports,
- 7. Efficient delivery using seminar presentations,
- 8. Viva voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

II Year B.A. (CA) / B Com (CA) / B.Sc. (CA),

CBCS - SEMESTER-III

PROGRAMMING WITH C AND C++

MODEL QUESTION PAPER

Time: 3 Hours Max. Marks: 75

SECTION-A

Answer any FIVE of the following Questions:

 $(5 \times 5 = 25 \text{ Marks})$

- 1. Write about constants used in C language
- 2. Explain briefly about switch statement
- **3.** Write about break and continue statements
- 4. Explain two dimensional array declaration
- 5. Write about call by value method
- **6.** Define recursive function
- 7. Briefly explain classes and objects
- 8. Write about friend function in C++
- 9. Define Inheritance. Explain hybrid inheritance
- **10.** Explain about benefits of inheritance

SECTION - B

Answer any **FIVE** of the following Questions

 $(5 \times 10 = 50 \text{ Marks})$

- 11. Explain the structure of C program with an example.
- 12. What is an operator? Write about various operators used in C
- 13. Explain about repetitive statements with an example
- 14. Define an Array. Write about declaration of arrays in C
- 15. Illustrate string handling functions used in C language
- **16.** What is a function? Write about defining a function
- 17. Write in detail about features of Object Oriented Programming
- 18. Explain different types of constructors in C++
- **19.** Explain about various types of inheritance.
- **20.** Write C++ program to implement multiple inheritance

Note: Paper Setter must select TWO Short Questions and TWO Essay Questions from Each Unit

PROGRAMME: THREE-YEAR DEGREE

Semester-wise Syllabus under CBCS (w.e.f. 2020-21 Admitted Batch)

II Year B.A. (CA) / B.Sc. (CA), SEMESTER- IV Discipline: COMPUTER APPLICATIONS

PROGRAMMING WITH JAVA

Semester	Course	Course Title	Hours/Week	Hours	Credits
	Code				
IV	C4	Programming with Java	4	60	3
					1

Model Outcomes:

At the end of the course, the students is expected to DEMONSTRATE the following cognitive abilities (thinking skill) and psychomotor skills.

- A. Remembers and states in a systematic way (Knowledge)
 - 1. Develop programming skills
 - 2. Declaration of variables and constants use of operators and expressions
 - 3. learn the syntax and semantics of programming language
 - 4. Be familiar with programming environment of Java
 - 5. Ability to work with textual information (characters and strings) & arrays
- B. Explains (Understanding)
 - 6. Understanding a functional hierarchical code organization
 - 7. Understanding a concept of object thinking within the framework of functional model
 - 8. Write program on a computer, edit, compile, debug, correct, recompile and run it
- C. Critically examines, using data and figures (Analysis and Evaluation)
 - 9. Choose the right data representation formats based on the requirements of the problem
 - 10. Analyze how Java improves with object-oriented features
 - 11. Evaluate comparisons and limitations of the various programming constructs and choose correct one for the task in hand.
- D. Working in 'Outside Syllabus *Area' under a Co-curricular Activity* (Creativity)

 Planning of structure and content, writing, updating and modifying computer programs for user solutions
- E. Exploring programming and Design with Java classes for code reuse (Practical skills***)

SYLLABUS

Unit Details

- I Fundamentals Of Object Oriented Programming: Introduction, Object Oriented paradigm, Basic Concepts of OOP
 - **Overview of Java Language:** Introduction, Java features, Java program structure, Java Virtual Machine Java versus C++
- Basics of Java: Identifiers literals: integer literals character literals Floating point literals string literals. Operators:- Arithmetic operators, relational operators, assignment operators, conditional operator. Variables, Keywords, Data types, Input and Output in Java: Reading Input with Java.util.Scanner Class, Displaying Output with System.out.println()
- III Java Control structures: if, if..else statement switch statement while statement do..while statement for loop continue statement break statement

Arrays: Arrays, One-dimensional arrays, Creating an array, Two – dimensional arrays, creating a two-dimensional array

- IV Classes, Objects & Methods: Introduction, Defining a class, Adding variables, Adding methods, Creating objects, Accessing class members, Constructors, Method overloading, Static members, Nesting of methods
- V Inheritance: Introduction, Types of inheritance, Overriding methods, Final variables and methods, Final classes, Abstract methods and classes

Threads: Introduction, Creating Threads, Extending the Threads, Stopping and Blocking a Thread, Lifecycle of a Thread

Reference books:

- 1. Programming with Java by E.Balagurusamy
- 2. Programming in Java by Sachin Malhotra, OXFORD University Press
- 3. Java complete Reference by Herbert Schildt
- 4. John R. Hubbard, Programming with Java, Second Edition, Schaum"s outline Series, TATA McGraw-Hill Company.

PROGRAMMING WITH JAVA LAB

Semester	Course	Course Title	Hours/Week	Hours	Credits
	Code				
IV	C4-P	Programming with Java Lab	2	30	2

- 1. Program to find factorial of a number
- 2. Program to find simple interest
- 3. Program to convert temperature from Celsius to Fahrenheit
- 4. Program to search an element in an array
- 5. Program to find addition of two matrices
- 6. Program to demonstrate constructor
- 7. Program to implement method overloading
- 8. Program to implement single inheritance
- 9. Program to implement thread

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

MEASURABLE

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity)
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams)
- 4. Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)
- 5. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity))

General

Group Discussion

Visit to Software Technology parks / industries

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Coding exercises,
- 4. Practical assignments and laboratory reports,
- 5. Observation of practical skills,
- 6. Individual and group project reports,
- 7. Efficient delivery using seminar presentations,
- 8. Viva voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

II Year B.A. (CA) / B.Sc. (CA)

CBCS - SEMESTER- IV

PROGRAMMING WITH JAVA

MODEL QUESTION PAPER

Time: 3 Hours Max. Marks: 75

SECTION-A

Answer any <u>FIVE</u> of the following Questions:

 $(5 \times 5 = 25 \text{ Marks})$

- 1. Differentiate Java and C++
- 2. Explain briefly about JVM
- 3. Define variable. Describe the declaration of variables in Java
- **4.** Write the importance of conditional operator
- 5. Write about for loop with an example
- **6.** How do create an array in Java?
- 7. Define class. Briefly explain classes in Java
- 8. Write about creating objects in Java
- **9.** Define Inheritance. Explain with an example
- 10. Explain about method creating a thread

SECTION - B

Answer any **FIVE** of the following Questions

 $(5 \times 10 = 50 \text{ Marks})$

- **11.** Explain the structure of Java program with an example.
- 12. Write the basic concepts of OOP
- 13. Explain about data types used in Java
- **14.** Explain how do you input data in Java with an example
- 15. Illustrate the conditional control statements
- **16.** What is an array? Explain the declaration of arrays in Java
- 17. Explain about accessing class members in Java with an example program
- 18. Write about static members in Java
- **19.** Explain about various types of inheritance.
- 20. Explain thread life cycle

Note: Paper Setter must select TWO Short Questions and TWO Essay Questions from Each Unit

PROGRAMME: THREE-YEAR DEGREE

Semester-wise Syllabus under CBCS (w.e.f. 2020-21 Admitted Batch)

II Year B.A. (CA) / B Com (CA) / B.Sc. (CA), SEMESTER- IV

Discipline: COMPUTER APPLICATIONS

DATABASE MANAGEMENT SYSTEM

Semester	Course	Course Title	Hours/Week	Hours	Credits
	Code				
IV	C5	Database Management System	4	60	3

Model Outcomes for Database Management System

At the end of the course, the students is expected to DEMONSTRATE the following cognitive abilities (thinking skill) and psychomotor skills.

- A. Remembers and states in a systematic way (Knowledge)
 - 1. Understand the role of a database management system in an organization.
 - 2. Understand basic database concepts, including the structure and operation of the relational data model.
 - 3. Understand and successfully apply logical database design principles, including E-R diagrams and database normalization
 - 4. Understand Functional Dependency and Functional Decomposition
- B. Explains (Understanding)
 - 5. To design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS.
 - 6. Perform PL/SQL programming using concept of control statements
- C. Critically examines, using data and figures (Analysis and Evaluation)
 - 7. Model an application's data requirements using conceptual modeling tools like ER diagrams and design database schemas based on the conceptual model
- D. Working in 'Outside Syllabus *Area' under a Co-curricular Activity* (Creativity) Design and implement a small database project
- E. Construct simple and moderately advanced database queries using Structured Query Language (SQL) (Practical skills)

SYLLABUS

Unit	Details				
I	Overview of Database Management System				
	Introduction, Data and Information, Database, Database Management System, Objectives of				
	DBMS, Evolution of Database Management System, Classification of Database				
	Management System, services of database system				
II	File-Based System				
	File Based System. Drawbacks of File-Based System, DBMS Approach, Advantage of				
	DBMS, Data Models, Components of Database System, DBMS Vendors and their products.				
III	Entity-Relationship Model:				
	Introduction, The Building Blocks of an Entity-Relationship, Classification of Entity Set,				
	Attribute Classification, Relationship Degree, Relationship Classification, CODD's Rules,				
	Relational Data Model, Concept of Relational Integrity.				
IV	Structured Query Language				
	Introduction, SQL Literals, SQL operators, Commands in SQL, Data types in SQL, Data				
	Definition Language (DDL) commands, Table Modification, Table Truncation, Selection				
	Operation, Projection Operation, Aggregate Functions, Data Manipulation Language				
	commands, Imposition of Constraints, Set Operations.				
V	PL/SQL:				
	Introduction, Structure of PL/SQL, Data Types of PL/SQL, PL/SQL operators, Steps to				
	Create a PL/SQL Program, Control Structures: conditional control statements, Iterative				
	Control statements				

Learning Resources (Database Management System)

References:

- 1. Paneerselvam: Database Management system, PHI.
- 2. MARTIN, Database Management-Prentice Hall of India, New Delhi.
- 3. Bipin C.Desai, `An Introduction to Database System`, Galgotia Publications
- 4. Korth, Database Management System.
- 5. Navathe, Database Management System.
- 6. S. Sumathi, S. Esakkirajan, Fundamentals of Relational Database Management System
- 7. SQL, PL/SQL the Programming Language of Oracle, Ivan Bayross, BPB publications

Online resources:

http://www.onlinegdb.com/

http://www.tutorialspoint.com/

http://learnsql.com

https://www.codecademy.com/learn/learn-sql/

https://www.w3schools.com/sql/default.asp

DATABASE MANAGEMENT SYSTEM LAB

Semester	Course	Course Title	Hours/	Hours	Credits
	Code		Week		
IV	C5-P	Database Management System Lab	2	30	2

- 1. Create a table with constraints so that invalid data should not be entered into the table
- 2. Create the employee table as shown below and generate queries

Employee (empno, ename, job, joindate, salary, comm, deptno)

- i. Display all the rows of employee table
- ii. List out employee names and their jobs of all employees
- iii. List employee details who are working as CLERK
- iv. List employee details whose salary is more than 2500
- v. Display employee details who is salary between 3000 and 5000
- vi. Display all employee names in alphabetical order
- vii. Count number of rows are there in employee table
- viii. Find sum and average salaries of all employees
 - ix. Find job wise number of employee working and their total salaries
 - **x.** Find in which job more than 3 employees working
- 4. Write a PL/SQL program to Find Biggest of Three numbers.
- 5. PL/SQL program to find whether a number is positive, negative or zero
- 6. PL/SQL program to find factorial of a number
- 7. PL/SQL program to calculate simple interest
- 8. PL/SQL program to retrieve data from a table and display them

RECOMMENDED CO-CURRICULAR ACTIVITIES:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

Measurable

- 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- 2. Student seminars (on topics of the syllabus and related aspects (individual activity)
- 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams)
- 4. Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)
- 5. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

General

- 1. Group Discussion
- 2. Visit to Software Technology parks / industries

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;

- 1. The oral and written examinations (Scheduled and surprise tests),
- 2. Closed-book and open-book tests,
- 3. Coding exercises,
- 4. Practical assignments and laboratory reports,
- 5. Observation of practical skills,
- 6. Individual and group project reports,
- 7. Efficient delivery using seminar presentations,
- 8. Viva voce interviews.
- 9. Computerized adaptive testing, literature surveys and evaluations,
- 10. Peers and self-assessment, outputs form individual and collaborative work

II Year B.A. (CA) / B Com (CA) / B.Sc. (CA)

CBCS - SEMESTER- IV

DATABASE MANAGEMENT SYSTEM

MODEL QUESTION PAPER

Time: 3 Hours Max. Marks: 75

SECTION-A

Answer any FIVE of the following Questions:

 $(5 \times 5 = 25 \text{ Marks})$

- 1. Define data and Information
- 2. Write objectives of database management system
- 3. Write various products of DBMS
- **4.** Write about file oriented approach
- 5. Illustrate the degree of relationship in ER model
- 6. Write about type of entities in ER model
- **7.** Explain SQL literals
- **8.** How do you delete the data in a table
- 9. Write PL/SQL program structure
- 10. Write if statement in PL/SQL with an example

SECTION - B

Answer any **FIVE** of the following Questions

 $(5 \times 10 = 50 \text{ Marks})$

- 11. Define DBMS. Write evolution of database management system
- 12. Write about classification of Database management system
- 13. Explain the advantages of database system
- **14.** Write about components of database system
- 15. Write about Codd's rules
- **16.** Explain the relationship integrity principles
- 17. Write about types of SQL commands
- 18. Explain set operators with an example in SQL
- 19. Write about PL/SQL data types
- 20. What are iterative statements? Explain

Note: Paper Setter must select TWO Short Questions and TWO Essay Questions from Each Unit